

Cardiac Screening Guidelines for Return To Play After COVID-19: The Current Evidence

> Dr. Saif Shamshoon, MD CCFP PGY-3 Sport and Exercise Medicine

McMaster University, Hamilton ON Canada

- Cardiac injury post COVID-19
- Myocarditis
 - Signs and symptoms
 - Investigations & diagnosis
- Current cardiac testing protocols & their evidence
- Updated Return to Play guidelines post COVID-19

Cardiac Injury in COVID-19

Siripanthong et al, 2020

Cardiac Injury in COVID-19

Akhmerov et al, 2020

Myocarditis

Signs and Symptoms

- Varies amongst patients (within 2-3 weeks of infection)
 - Fatigue
 - Dyspnea (at rest or exertional)
 - Chest pain on exertion
 - Tachycardia
 - Severe cases: Right heart failure (raised JVP, peripheral edema)

Investigations

- ECG
 - ST elevation, new BBB, pseudoinfarct pattern, PVCs, bradyarrhythmia with advanced AV node block, t-wave inversions
- BW
 - troponin, lactate, ESR, CRP, consider BNP
- TTE and/or Cardiac MRI

Myocarditis - Diagnosis

- Clinically suspected myocarditis
 - \geq 1 clinical symptom + \geq 1 diagnostic criterion
 - ≥2 diagnostic criteria

- Diagnostic Criteria:
 - ECG or rhythm abnormalities
 - Elevated troponin
 - Structural/functional abnormalities on echo
 - Abnormal tissue characterisation on CMR

NOTE: CMR has not been studied as a primary screening tool in the diagnosis of myocarditis

ECG Utility

Screen for SCD

- ECG (when added to H&P) increases diagnosis of cardiac disease in athletes
- Data suggestive that ECG screening decreases sudden cardiac death in athletes

Education in Heart Physical activity and sport in primary and secondary prevention

ECG screening in athletes: differing views from two sides of the Atlantic

Rachel Lampert

Correspondence to Dr Rachel Lampert, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; rachel.lampert@yale.edu

BMJ Learning Take

COVID Specific

- 6/170 abnormal ECG
- ?symptomatic
- 0 myocarditis, 2 pericarditis
- Restricted from exercise x4 wks, 2 wks tx with indomethacin
- Gradual RTP with no adverse events

ORIGINAL ARTICLE

Use of Electrocardiographic Screening to Clear Athletes for Return to Sports Following COVID-19 Infection

Jacob L. Erickson, DO; Joseph T. Poterucha, DO; Alecia Gende, DO; Mark McEleney, MD; Corey M. Wencl, LAT; Marisa Castaneda, MS, ATC; Lindsay Gran, CMA; Joel Luedke, ATC, LAT; Jill Collum, LAT; Karen M. Fischer, MPH; and Andrew R. Jagim, PhD

Troponin Utility

- Two Italian Serie A teams
- 13/58 players (22.4%) COVID +ve
- all had a negative cardiovascular examination
- 2/13 (15%) elevated troponin
- 2/45 COVID -ve players had elevated troponin
- Negative CMR in all

International Journal of Cardiology Volume 326, 1 March 2021, Pages 248-251

Short communication

Interpretation of elevated high-sensitivity cardiac troponin I in elite soccer players previously infected by severe acute respiratory syndrome coronavirus 2 ★

Giuseppe Mascia ^a, Fabio Pescetelli ^b, Amedeo Baldari ^c, Piero Gatto ^d, Sara Seitun ^e, Paolo Sartori ^a, Maurizio Pieroni ^f, Leonardo Calò ^g, Roberta Della Bona ^a, Italo Porto ^{a, b} २ छ

Troponin increase indicative of myocardial injury prognostic in COVID-19

 Increases are nonspecific - can be due to chronic injury, acute nonischemic injury, or acute MI

JACC Journals > JACC > Archives > Vol. 76 No. 10

Previous Next

Cardiac Troponin for Assessment of Myocardial Injury in COVID-19: JACC Review Topic of the Week

JACC Review Topic Of The Week

Yader Sandoval, James L. Januzzi, and Allan S. Jaffe

J Am Coll Cardiol. 2020 Sep, 76 (10) 1244-1258

The Case For Cardiac MRI

May 27, 2021

Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes With Recent SARS-CoV-2 Infection Results From the Big Ten COVID-19 Cardiac Registry

Curt J. Daniels, MD¹; Saurabh Rajpal, MBBS, MD¹; Joel T. Greenshields, MS²; <u>et al</u>

 \gg Author Affiliations | Article Information

JAMA Cardiol. 2021;6(9):1078-1087. doi:10.1001/jamacardio.2021.2065

- 13 universities, 2810/9255 (30.4%) COVID +ve
- 2461/2810 completed cardiac evaluation, 1597 with CMR
- CMR imaging for all athletes yielded a 7.4-fold increase in detection of myocarditis (clinical and subclinical).

The Case Against Cardiac MRI

- Outcomes Registry for Cardiac Conditions in Athletes (ORCCA) within NCAA sports
- 19,378 athletes tested, 3018 +ve COVID
- Diagnostic yield of CMR 4.2 times higher for a clinically indicated CMR (15 of 119 [12.6%]) vs primary screening CMR (6 of 198 [3.0%])
- Predictors of SARS-CoV-2 cardiac involvement included:
 - Cardiopulmonary symptoms
 - At least 1 abn triad test result

SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes 😒 🔞

Nathaniel Moulson, Bradley J. Petek, Jonathan A. Drezner, Kimberly G. Harmon, Stephanie A. Kliethermes, Manesh R. Patel, and Aaron L. Baggish 🖂

and for the Outcomes Registry for Cardiac Conditions in Athletes Investigators

Originally published 17 Apr 2021 | https://doi-org.libaccess.lib.mcmaster.ca/10.1161/CIRCULATIONAHA.121.054824 | Circulation. 2021;144:256–266

Cardiac MRI Indicated?

• Myocarditis prevalence:

- 0.6% to 0.7% clin. indicated CMR
- 2.3%–3.0% primary CMR screen
- CMR abnormalities, in the absence of symptoms/diagnostic abnormalities, do not fulfil the definition of clinical myocarditis
- Technical imaging challenges with CMR cause heterogeneity
 - Big Ten registry diagnosis ranged from 0% to 7.6% on CMR
 - Rajpal et al, 2021: prevalence of reported myocarditis ranged from 0% to 15% with CMR

When to consider cardiac MRI in the evaluation of the competitive athlete after SARS-CoV-2 infection $\,$ Jan 2022 $\,$

Dermot Phelan¹, D Jonathan H Kim², D Jonathan A Drezner³, Michael D Elliott⁴, Matthew W Martinez⁵, Eugene H Chung⁶, Sheela Krishan⁷, Benjamin D Levine⁸, Aaron L Baggish⁹

Correspondence to Dr Dermot Phelan, Sports Cardiology Center, Atrium Health Sanger Heart & Vascular Institute, Charlotte, NC 28203, USA; Dermot, Phelan, Qatriumhealth.org

Clark et al, 2021

- COVID-19-positive athletes were compared to retrospective controls
- Focal LGE at the RV insertion present in 22% of study subjects, 24% of athletic controls

Updated RTP Guidelines

Mild

 Anosmia, ageusia, headache, mild fatigue, mild upper respiratory tract illness, and mild gastrointestinal illness

Moderate

 Persistent fever, chills,myalgias, lethargy, dyspnea, and chest tightness

CV symptoms

 Dyspnea, exercise intolerance, chest tightness, dizziness, syncope, and palpitations

Updated RTP Guidelines

NOTE: THIS GUIDANCE IS SPECIFIC TO SPORTS WITH AN AEROBIC COMPONENT

Summary

- COVID affects the heart directly and through an inflammatory cascade
- Myocarditis is a major concern in the athlete post-COVID as a cause of SCD
- The evidence does not support cardiac MRI as a screening tool
- Cardiology associations worldwide have differing testing protocols
- BJSM RTP guidelines most up to date albeit quite conservative

References

- Moulson, N., Petek, B. J., Drezner, J. A., Harmon, K. G., Kliethermes, S. A., Patel, M. R., & amp; Baggish, A. L. (2021). SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes. Circulation, 144(4).
- Akhmerov, A., & amp; Marbán, E. (2020). COVID-19 and the Heart. Circulation Research, 126(10).
- Covid-19, myocarditis, and cardiac MRI in athletes: Distinguishing signal from noise. American College of Cardiology. (n.d.). Retrieved February 23, 2022, from

https://www.acc.org/latest-in-cardiology/articles/2021/09/28/18/07/covid-19-myocarditis-and-cardiac-mri-in-athletes

- Erickson, J. L., Poterucha, J. T., Gende, A., McEleney, M., Wencl, C. M., Castaneda, M., Gran, L., Luedke, J., Collum, J., Fischer, K. M., & amp; Jagim, A. R. (2021). Use of electrocardiographic screening to clear athletes for return to sports following COVID-19 infection. Mayo Clinic Proceedings: Innovations, Quality & amp; Outcomes, 5(2), 368–376. https://doi.org/10.1016/j.mayocpigo.2021.01.007
- Khan, Z., Na, J. S., & amp; Jerome, S. (2021, January 1). Review of covid-19 myocarditis in competitive athletes: Legitimate concern or fake news? Frontiers. Retrieved February 23, 2022, from https://www.frontiersin.org/articles/10.3389/fcvm.2021.684780/full
- Kim, J. H. (2022, January 5). Screening cardiac magnetic resonance imaging for athletes after COVID-19: Is it time to end the debate? Trends in cardiovascular medicine. Retrieved February 23, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730531/
- Lampert, R. (2017). ECG screening in athletes: Differing views from two sides of the Atlantic. Heart, 104(12), 1037–1043. <u>https://doi.org/10.1136/heartjnl-2016-309448</u>
- Martinez, M. W. (2021, July 1). Inflammatory heart disease in professional athletes with prior COVID-19 and return-to-play cardiac screening. JAMA Cardiology. Retrieved February 23, 2022, from https://jamanetwork.com/journals/jamacardiology/fullarticle/2777308

References

- Martinez, M. W., Tucker, A. M., Bloom, O. J., Green, G., DiFiori, J. P., Solomon, G., Phelan, D., Kim, J. H., Meeuwisse, W., Sills, A. K., Rowe, D., Bogoch, I. I., Smith, P. T., Baggish, A. L., Putukian, M., & Engel, D. J. (2021). Prevalence of inflammatory heart disease among professional athletes with prior COVID-19 infection who received systematic return-to-play cardiac screening. JAMA Cardiology, 6(7), 745. <u>https://doi.org/10.1001/jamacardio.2021.0565</u>
- Mascia, G., Pescetelli, F., Baldari, A., Gatto, P., Seitun, S., Sartori, P., Pieroni, M., Calò, L., Della Bona, R., & amp; Porto, I. (2021). Interpretation of elevated high-sensitivity cardiac troponin I in elite soccer players previously infected by severe acute respiratory syndrome coronavirus 2. International Journal of Cardiology, 326, 248–251. <u>https://doi.org/10.1016/j.ijcard.2020.11.039</u>
- Mitrani, R. D., Dabas, N., & amp; Goldberger, J. J. (2020). Covid-19 cardiac injury: Implications for long-term surveillance and outcomes in survivors. Heart Rhythm, 17(11), 1984–1990. <u>https://doi.org/10.1016/j.hrthm.2020.06.026</u>
- Phelan, D., Kim, J. H., Drezner, J. A., Elliott, M. D., Martinez, M. W., Chung, E. H., Krishan, S., Levine, B. D., & amp; Baggish, A. L. (2022). When to consider cardiac MRI in the evaluation of the competitive athlete after SARS-COV-2 infection. British Journal of Sports Medicine. <u>https://doi.org/10.1136/bjsports-2021-104750</u>
- Rajpal, S., Tong, M. S., Borchers, J., Zareba, K. M., Obarski, T. P., Simonetti, O. P., & amp; Daniels, C. J. (2020). Cardiovascular magnetic resonance findings in competitive athletes recovering from covid-19 infection. JAMA Cardiology. <u>https://doi.org/10.1001/jamacardio.2020.4916</u>
- Sandoval, Y., Diseases, D. of C., Januzzi, J. L., Cardiology, D. of, Jaffe, A. S., C., H., Al., E., F., Z., T., C., D., W., T., G., S., S., K., T., M., A., P.K., B., H., H., X.W., H., H., A., L., ... H.K., S. (2020, September 1). Cardiac troponin for assessment of myocardial injury in covid-19: JACC review topic of the week. Journal of the American College of Cardiology. Retrieved February 23, 2022, from https://www.jacc.org/doi/abs/10.1016/j.jacc.2020.06.068
- Starekova, J., Bluemke, D. A., Bradham, W. S., Eckhardt, L. L., Grist, T. M., Kusmirek, J. E., Purtell, C. S., Schiebler, M. L., & amp; Reeder, S. B. (2021). Evaluation for myocarditis in competitive student athletes recovering from coronavirus disease 2019 with Cardiac Magnetic Resonance Imaging. JAMA Cardiology, 6(8), 945. https://doi.org/10.1001/jamacardio.2020.7444